How Many Primes?

Some numbers, like 60, have many factors. This means that you can arrange 60 dots into many different rectangle shapes:

Some numbers, like 13, can't be arranged into many rectangles. In fact, only this (not particularly interesting) rectangle is possible:

Numbers like this are called prime numbers.
Prime numbers are numbers with exactly 2 factors.

The full list of the prime numbers starts: $2,3,5,7,11,13 \ldots$
How does it continue? Does the list go on forever, or is there such thing as the largest prime?

It might seem that the larger a number gets, the more likely it is that it can form many different rectangles. And indeed, in a sense, that's correct.

But we're asking about existence, not likelihood.
Spoiler alert: I'll reveal the answer on the next page. If you would like to think about the question first, do so now!

Question: How many prime numbers are there?

Answer: \quad There are infinitely many of them.

So the primes don't 'run out'. There is no largest prime number. ${ }^{1}$
In the rest of this article, there is a proof that there are infinitely many primes. I suggest that you read it slowly and carefully, trying to understand one step at a time.

Proof that there are infinitely many prime numbers

The prime numbers are: $2,3,5,7, \ldots$ (and so on)
Let's suppose that there is a biggest prime number, which we'll call \mathbf{P}.
So the full list of primes is: $2,3,5,7, \ldots, \mathbf{P}$
If we multiply this list of prime numbers together, we get: $2 \times 3 \times 5 \times 7 \times \ldots \times \mathbf{P}$
This big number: $(2 \times 3 \times 5 \times 7 \times \ldots \times \mathbf{P})$ is a multiple of 2 .
It's also a multiple of 3
It's also a multiple of 5
etc. all the way up to: It's also a multiple of \mathbf{P}

So the following bigger number: $[(2 \times 3 \times 5 \times 7 \times \ldots \times \mathbf{P})+1]$ is one more than a multiple of 2 . It's also one more than a multiple of 3 , and so on.

So it is not a multiple of 2 and it is not a multiple of 3 and it is not a multiple of 5
etc. all the way up to: and it is not a multiple of \mathbf{P}
So $[(2 \times 3 \times 5 \times 7 \times \ldots \times \mathbf{P})+1]$ is not a multiple of any of the prime numbers, so it must itself be prime.

So $[(2 \times 3 \times 5 \times 7 \times \ldots \times \mathbf{P})+1]$ is a prime number that is bigger than \mathbf{P}.
But earlier we said that P was the biggest prime number. Our logic has been correct. So the only thing that could be wrong is our opening statement that there is a biggest prime number. So there can't possibly be a biggest prime number, which means that there are infinitely many prime numbers.

[^0]
How Many Primes?: Comprehension Questions:

1. It's possible to make 6 different rectangles from 60 dots (see the beginning of the article). How many different rectangles can be made with:
a) 10 dots
b) 12 dots
c) 19 dots
2. Which of the numbers of dots from question 1 is prime?
3. Is $\left(2^{82,589,933}-1\right)$ the largest prime number?

How Many Primes?: Comprehension Answers:

1. a) With 10 dots you can make 2 different rectangles:
b) With 12 dots you can make 3 different rectangles:

c) With 19 dots you can only make this one rectangle:
2. Which of the numbers of dots from question 1 is prime?

19 is the prime number. It has two factors, 19 and 1. (And hence only one possible rectangle of dots)
3. Is $\left(2^{82,589,933}-1\right)$ the largest prime number?

No!
There are infinitely many prime numbers.

[^0]: ${ }^{1}$ There is the largest prime number that humans have found so far. At time of writing, this is $2^{82,589,933}-1$. This is a very large number. If you wrote it out, you'd need to write down 24,862,048 digits.

